
Fluorinated Electrolyte for 5-V Li-Ion Chemistry

DOE Annual Merit Review Meeting
Washington D.C.

June 8-12, 2015

Project ID #: ES218

Zhengcheng(John) Zhang (PI)
Kang Xu (Co-PI), Xiao-Qing Yang (Co-PI)

Argonne National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information



Project Overview

Timeline Barriers

Budget Partners

o Project start date: Oct. 1, 2013 
o Project end date: Sept. 30, 2015 
o Percent complete: 50%

o Low oxidation stability of electrolyte 
o High, low temperature performance
o Poor cycling life due to the instability of 

electrode/electrolyte interface
o Safety concern associated with high 

flammability and reactivity 

o Total project funding
- 100% DOE funding

o Funding received in FY14: $500 K
o Funding for FY15: $500 K

o U.S. ARL (collaborator)
o BNL (collaborator)
o LBL (collaborator)
o Prof. Brett Lucht (XPS)
o Dr. Marshall Smart (JPL)
o Dr. Larry Curtiss (DFT)
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Project Objective

To develop advanced electrolyte 
materials that can significantly improve 
the electrochemical performance 
without sacrificing the safety of lithium-
ion battery of high voltage high energy 
cathode materials to enable large-
scale, cost competitive production of 
the next generation of electric-drive 
vehicles.

To develop electrolyte materials that 
can tolerate high charging voltage 
(>5.0 V vs Li+/Li) with high compatibility 
with anode material providing stable 
cycling performance for high voltage 
cathodes including 5-V LiNi0.5Mn1.5O4
(LNMO) cathode and high energy 
LMR-NMC cathode recently developed 
for high energy high power lithium-ion 
battery for PHEV/EV applications. 
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Technical Approach/Strategy 
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 Expand the electrochemical window of electrolyte solvents by molecular engineering to enhance
the oxidation stability of the electrolyte (5.0 V vs Li+/Li) without compromising the salt solubility,
ionic conductivity, fast ion transportation, wide temperature range and safety.

 High compatibility with cell component (separator, electrode, binder et al.)
 SEI formation capability on carbonaceous anode surface.
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The Challenges for High Voltage LiNi0.5Mn1.5O4 Cells
1. Variations in performance depending on the synthesis process/sintering conditions

SEM images of LiMn1.5Ni0.5O4 samples 
prepared by employing various 
precursors: (a) and (b); 
Crystallographic planes of (c) 
octahedral and (d) truncated 
octahedral spinel synthesized by 
different synthesis techniques;

Cycling performance of LNMO cell with 
various particle morphologies

1) Manthiram et al., Energy Environ. Sci., 2014, 7, 1339; K. Zaghib et al., RSC Adv., 2014, 4, 154-167.

(c) (d)

2. Instability of the cathode surface in contact with electrolyte at 4.7 V, especially at high T

charge

55oC

Heterogeneous charging voltage profile and heavy deposition observed on LNMO electrode surface (SEM), 
indicating the instability of  SOA electrolyte at high charging voltage at high temperature.
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Hu et al., J. Power Sources, 236, (2013), 175-180.

Technical Accomplishments and Progress
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Molecular Structure
Oxidation Potential 
(Pox/V)

Anion Effect
Potential (Pox/V)

Reduction 
Potential (Pred/V)

Stretch Bond 
Potentials (Pred/V)

7.10 (6.62, EMC)
6.26 (PF6: HF forms)
5.79 (TFSI: H transfer) 0.03

1.40 (CF3CH2-O)
1.49 (CH3-O)
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1.54 (spontaneous C-
O bond opening)
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5.80 (TFSI) 0.33 1.56 (CHF-O)
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6.24
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 Electron-withdrawing groups of -F and -Rf groups lower the energy level of the HOMO, thus increase
the theoretical oxidation stability of the F-compounds.

 The electron-withdrawing effect varies with the structure and the position of the substitution groups.
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Synthesis of Fluorinated Carbonates 
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 0.5M LiPF6 in F-cyclic carbonate/F-EMC=1:1 (v/v); LNMO/Li half cell, fully charged at 4.9, 5.0, 5.1 and 5.2V

Oxidation Stability of Cyclic F-Carbonates

F-cyclic carbonate            FEC >      TFPC >     EC    >   TFE-PC-E
oxidation stability:
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 F-electrolyte showed small difference in leakage current at RT; at 55oC, the current increases significantly
 Due to the catalytic reaction at the interface of LNMO/electrolyte at high temperature, EC and TFE-PC-E is 

extremely unstable.
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HF-DEC          >      TF-DEC          ≈        F-EMC            >       DMC       
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 * Oxidation stability at room temperature; high temperature data deviates from the RT data due to the 
thermal decomposition.

 0.5 M LiPF6 in FEC/F-linear carbonate = 1:1 (v/v); LNMO/Li half cell, fully charged at 4.9, 5.0, 5.1 and 5.2 V 
at RT and 55oC.
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Oxidation Stability of Linear F-Carbonates
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Mixed Solvent Ratio and Salt Concentration on Oxidation  

0 10 20 30 40 50 60 70 80 90

4

6

8

10

12

14

16

18

20

22

24
5.2 V

5.1 V

5.0 V

 

 

C
ur

re
nt

 (u
A

)

FEC content (%)

4.9 V

0.5 M LiPF6 in FEC:DMC (from 1:9 to 9:1)                            FEC:DMC = 5:5 with LiPF6 from 0.5 M to 1.25 M

FEC content affects the voltage stability at high 
charge voltages, but less significant at lower 
voltages (4.9 and 5.0V)
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No significant effect of LiPF6 salt concentration on 
voltage stability, especially at charge voltages 
below 5 V.
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Fluorinated Electrolyte for LNMO/Graphite Full Cell

F-EC(3)           F-EMC(5)                      F-EPE(2)                 LiPF6  (1.0 M) LiDFOB (1%)

HVE 3 shows great compatibility with graphite surface as indicated by the improvement in LNMO/graphite cells compared
with Gen 2 electrolyte, especially at 55 ºC.
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(b)LNMO/graphite, 3.5-4.9 V

Hu, Zhang et al. Electrochem. Commun., 2013, 35, 76.
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Cathode: LiNi0.5Mn1.5O4
Anode: Graphite A12
Formation condition: 3.5-4.9 V for 3 cycles, C/10 rate at RT

Self-discharge Test: fully charge to 4.9 V at C/10 (RT or 55 oC), then rest and monitor 
the voltage change. Data points are taken every 5 minutes.

Gen 2: SOA electrolyte 
(1.2M LiPF6 EC/EMC 3/7 
in weight ratio)

HVE-3*: 3rd Generation high 
voltage F-electrolyte
(1.0M LiPF6 FEC/FEMC/F-EFE 
3/5/2 in volume ratio 

* Ref: Hu & Zhang 
Electrochem. Commun. 35 (2013) 76-79.

Improved Self-Discharge of LNMO/Graphite Cells
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Gen 2 HVE 3

1.2M LiPF6 EC/EMC 3/7 weight                       1.0M LiPF6 FEC/F-EMC/F-EPE 
3/5/2 in volume

Fluorinated Electrolytes are Not Flammable

Video Here Video Here
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TEM Characterization of Cycled LNMO Cathode

 Etching of LNMO particles is pronounced in baseline cell due to the oxidative decomposition
of EC-EMC solvents and the generation of HF leading to Mn and Ni dissolution.

 Mn and Ni exist in the cycled baseline electrolyte with much higher concentration (ICP-MS
data, not shown).

 LNMO surface is intact with HVE electrolyte, and more integrated when LiDFOB additive was
employed, indicating the improved chemical and electrochemical stability of F-electrolyte.

Gen 2                                     HVE 3                                      HVE 3+ Additive
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 Anode of Gen2 cell showed significant amount of nanoparticles (a few nm) of transitional M species in the
carbon black region, which might catalyze the parasitic reactions.

 However, anode of HVE3 + Additive cell showed quite different morphology of the transition M: less amount
and deposition/agglomeration (~10nm), less catalytic effect leading to less reductive decomposition of
electrolyte.

Gen 2                                     HVE 3                                      HVE 3 + Additive

pristine

TEM Characterization of Graphite Anode
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(a) LNMO/graphite cell assembly with incorporated lithium metal; 
(b) lithium metal working mechanism at the formation cycles; (c) 
electrochemical prelithiation of graphite anode; (d) direct shorting 
of graphite anode and Li.
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Thermal Stability of FEC-Based Electrolytes: An NMR Study
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31P-NMR
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    15 days @ 50oC 

    2 days @ 50oC 

    2 days @ RT 

Pure TFPC (no LiPF6) 

Method: 1 M LiPF6
 in TFPC, heated @ 50 °C for 15 days 

a                                                b                   c 

1H NMR spectra of TFPC-3 electrolyte from harvested LNMO/graphite cells; TFPC 
remained stable during cycling at high temperature. 

Thermal Stability of TF-PC Based Electrolytes   
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 LNMO/Li half-cell with TFPC-3 electrolyte performs much better than the baseline cell
 Improved oxidation stability on LNMO
 Passivation of Li metal anode due to the thermodynamic instability

Cell Performance of TF-PC Based Electrolyte TFPC-3
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Presence of FEC as an additive in the TFPC electrolyte may promote the 
formation of a more stable SEI on graphite
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 LNMO/A12 cells with TFPC-based electrolyte exhibits improved capacity retention at 55 oC, 
which is attributed to the superior oxidation stability of TFPC during high-temperature cycling.

 New formulations and additives for TFPC-based electrolyte is ongoing. 

TF-PC Based Electrolyte for LNMO/Graphite Cell at HT
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ARL Tasks: Novel Additives

A. v. Cresce, S. M. Russell, O. Borodin, D. Tran, K. Xu
Electrochemistry Branch, Army Research Lab, Adelphi, MD 20783

• Design of new additive/co-solvent 
structures

• Synthesis, purification and structural 
characterizations

• Electrochemical characterizations
• Fundamental understanding of 

interphasial process

DOE BATT ARL
FR 14 $100K $100K
FR 15 $100K $100K

The fate of phosphate in electrolyte
• Phosphate ends up on cathode and anode
• Fluorinated alkyls substructure on cathode 

HR-XPS conducted on both cathode 
and anode cycled in baseline and 
HFiP-containing electrolytes
• P 2p absent in control samples
• P2p on test samples

• 5~10 X more on cathode than 
anode

• C1s for CF3 only found on cathode



Philosophy for New 
Additives Structure

Design Concept:
• Additives interact with both cathode and anode in the cell
• Conventional approach: cathode-specific or anode-specific; 

cocktail 
• Hollistic approach: key structural elements that are effective 

in forming either cathode or anode SEIs are synthetically-
integrated in the same molecule
• Both high HOMO and low LUMO

A CA C



Computational Aid (Borodin):
• QC prediction of HOMO/LUMO can be both very accurate
• Reduction and oxidation potentials cannot predict the consequent 

interphase chemistry and properties

• Organic synthesis/electrochemical testing/surface 
characterization/organic re-synthesis (Xu, Cresce, 
Russell)

B3LYP/6-31+G** optimization, gas-phase not PCM eV eV
O V HOMO LUMO SMILES

112/CCO3CCC-B3LYP-631xGss.out -0.29624 0.00664 -8.06 0.18 COc(=O)OCCC (MePrCO3)
22/CCO3Ccc-B3LYP-631xGss.out -0.28179 -0.01912 -7.67 -0.52 COc(=O)Occc

3
14/CCO3Cctc-B3LYP-
631xGss.out -0.28822 -0.00968 -7.84 -0.26 COc(=O)OCc#c

4
23/C4F6H3CO3Cctc-B3LYP-
631xGss.out -0.29754 -0.02028 -8.10 -0.55 C(C)(C(F)(F)(F))(C(F)(F)(F))Oc(=O)OCc#c

5
5/C4F6H3CO3Ccc-B3LYP-
631xGss.out -0.29177 -0.02851 -7.94 -0.78 C(C)(C(F)(F)(F))(C(F)(F)(F))Oc(=O)Occc

6
11/C3F6HCO3Cctc-B3LYP-
631xGss.out -0.30199 -0.0261 -8.22 -0.71 C(C(F)(F)(F))(C(F)(F)(F))Oc(=O)OCc#c

COc(=O)OCCC (MePrCO3)

Design Strategy for New Additives



From Computer to 
Glassware…

Synthesis of the new concept 
compounds:

• 9 successes, >15 failures
(1) (2)

(3)

(4)

All new compounds
• No hits in SciFinder

• New molecules never existed before
• Patent in process

• Complete ARL IP
• Ready for scale-up at ANL MERF

Key sub-structures synthetically 
integrated into a single molecule
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Functional 
Carbonates

Functional Silanes Phosphite

* structure and purity 
both confirmed * structural confirmation on-going * purity still an issue to 

resolve
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Summary of New Additives
Made in FY2014 
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Multi-functional Units integrated into a Single Molecule

Electrochemical characterization on-going in FY 15
Cycling, floating test, etc:
• cathode: high V LMNO, S/C composite…
• anode: Si/C, graphite



• Effect of additives on Fluorinated Baseline• Similar but smaller effects as compared with Gen 2
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Two baseline electrolytes selected as baseline
• Aggressive floating tests were performed as rapid 
screening tool

• full Li-ion cells after initial cycling/forming
• Advantage of fluorinated electrolyte against 
oxidation is apparent

Preliminary 
Characterization



Effect of TMSHFiP on 
Impedance
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cycles with lower

impedance in both
charged and discharged 
states.

1. TMSHFiP silane effective in Gen 2 carbonate and fluorinated electrolyte system.
• Significantly reduces charge consumed by oxidation of Gen 2 carbonates
• Observed decreased 1 kHz cycling impedance in fluorinated electrolyte

TMSHFiP additive: a descendant of the HFiPP phosphate-based electrolyte additive;
MHC: a fluorinated carbonate

2. None of the propargyl-containing additives  works
• Too reactive for any electrolyte/LNMO combination
• Stable radical may form shuttling species
• DMVS-TFE very promising for Gen 2 carbonate systemC

on
cl

us
io

ns



Collaboration:

 U.S. Army Research Laboratory (Dr. Kang Xu, Project team member)
 Brookhaven National Laboratory (Dr. Xiao-Qing Yang, Project team member)
 University of Texas - Austin (Prof. Arumugam Manthiram)
 Center of Nano-Materials, Argonne National Laboratory (Dr. Larry Curtiss)

Interactions:

• University of Rhode Island (Prof. Brett Lucht)
• Jet Propulsion Laboratory (Dr. Marshall Smart)
• Lawrence Berkeley National Laboratory (Dr. Vincent Battaglia)
• Cell Analysis, Modeling, and Prototyping Facility (CAMP) (Dr. Andrew Jansen) 
• Material Engineering and Research Facility (MERF) (Dr. Gregory Krumdick)
• Arkema (Dr. Ryan Dirkx)
• NEI (Dr. Ganesh Skandan, Dr. Nader Hagh)

Collaboration and Coordination with Other 
Institutions 
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 Argonne took a combined approach to tackle the voltage instability of electrolyte by 
developing the fluorinated carbonate-based electrolytes with intrinsic stability and the 
passivating cathode additive to afford a stable electrode/electrolyte interphase. 

 An effective probing tool was established for electrolyte oxidation stability by 
electrochemical floating test.

 Fluorinated cyclic carbonates and fluorinated linear carbonates were synthesized and 
characterized and their electrochemical performance were evaluated in LNMO/graphite 
cells.

 FEC and TF-PC based electrolyte have achieved superior capacity retention especially 
at elevated temperatures in 5-V LNMO/graphite cells. Post-test analysis showed that the 
fluorinated electrolytes are much more stable in both the liquid electrolyte phase and on 
the electrolyte/cathode interface.

 Lithium compensation provides an efficient way to further improve the LNMO/graphite 
cells with a more stable fluorinated electrolytes.

 LNMO/graphite cells with fluorinated electrolytes showed improved self-discharge at 
elevated temperature at fully charged state.

 New electrolyte additives were synthesized and characterized; Live-formation of SEI by 
F-solvent was observed by in-situ electrochemical AFM.  

 New fluorinated sulfone-based electrolyte is in process.

Summary
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For the rest of the FY15, we will continue to  explore the fluorinated carbonate-
based electrolytes to enable the high voltage high energy cells.

 Synthesis and development of new additives tailored to stabilize the thermally stable 
fluorinated electrolyte TF-PC3.

 Investigate the Li+ solvation in the fluorinated electrolytes by 2D-DOSY NMR.
 Electrode surface analysis using XPS and HR-TEM.
 Scientific write-up for publication in peer-reviewed journals.

For the rest of the FY15, we will initiate the fluorinated sulfone-based electrolyte 
study for high voltage high energy Li-ion cells.

 DFT modeling of the electrochemical window of fluorinated sulfone.
 Synthesis and characterization of new fluorinated sulfone solvents.
 Evaluation of electrochemical performance.

Proposed Future Work

34



Technical Back-Up Slides
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Other Benefits of Fluorinated Electrolytes
Improved wetting (contact angle measurement)
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Conductivity:
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